
www.acsami.org

Enhanced Photocatalytic Activity of ZnO Microspheres via Hybridization with CulnSe₂ and CulnS₂ Nanocrystals

Fengyu Shen,[†] Wenxiu Que,^{†,*} Yucheng He,[†] Yuan Yuan,[†] Xingtian Yin,[†] and Gangfeng Wang[‡]

[†]Electronic Materials Research Laboratory, International Center for Dielectric Research, [‡]Department of Engineering Mechanics, SV Laboratory, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China

ABSTRACT: ZnO microspheres sensitized by CuInSe₂ and CuInS₂ nanoparticles, which were synthesized by a solvothermal method and have a size about 20 and 3.5 nm, respectively, were used to a photodegradation of rhodamine B under an irradiation of mercury lamp. Results show that the photocatalytic activities of the ZnO/CuInSe₂ and the ZnO/CuInS₂ are much higher than that of the ZnO microspheres because of a formation of the heterojunction in two systems. It is also noted that the ZnO/CuInS₂ exhibits a higher photocatalytic activity than the ZnO/CuInSe₂, which is probably related to more suitable band gap to sunlight for CuInS₂ nanocrystals and the larger specific surface due to a small size. Particularly, the ZnO/CuInSe₂/CuInS₂ shows the highest photocatalytic activities in all measured photocatalysts, which should be attributed to the formation of double heterojunctions among ZnO, CuInSe₂, and CuInS₂.

KEYWORDS: ZnO, CuInSe₂, CuInS₂, Rhodamine B, heterojunction, photocatalytic activity

1. INTRODUCTION

Organic pollution has been one of the most serious environmental problems during previous decades, and photocatalysis has been extensively used to eliminate toxic chemicals in the area of environmental remediation. 1-4 Semiconductor materials have attracted intensive interest in this area. Among various semiconductors, TiO2 is known as the most efficient photocatalyst because of its high photosensitivity, chemical stability, and nontoxic nature. ⁵⁻⁷ In the past several years, ZnO, whose band gap is 3.37 eV, has been considered as a suitable alternative to ${\rm TiO_2}$ because of its similar band gap energy and lower cost. ^{8–10} However, its large band gap along with a fast recombination rate of the photogenerated electron-hole pairs hinders its photocatalytic performance and limits its applications under the irradiation of sunlight.¹¹ Hence, to enhance the photocatalytic efficiency of ZnO, many improvements have been attempted. One of the most promising methods is to couple this wide band semiconductor with metals, such as Ag, Au, and Pt, or other semiconductors with different absorption band, such as TiO₂, SnO₂, CdS, ZnS and Bi₂O₃. ¹²⁻¹⁷ It has been reported that ZnO-based heterojunctions can inhibit the recombination of the photogenerated electron-hole pairs and enhance the photocatalytic activities. ^{18,19} In these cases, the energy levels of two kinds of semiconductor materials must match each other to form the staggered heterojunctions. For example, CuInSe2 and CuInS2 are two kinds of ideal sensitized materials to form heterojunction with those wide band gap semiconductors.

CuInSe₂ and CuInS₂ are I–III–VI₂ ternary compounds, with band-gaps of 1.04 and 1.53 eV, which match well to the solar spectrum, ^{20,21} and they have a large absorption coefficient and no highly toxic elements. Especially, optical absorption of the

 $CuInSe_2$ and $CuInS_2$ nanocrystals can be adjusted by varying their crystal size. However, there have been only a few reports on photocatalytic activity of I-III-VI2 ternary compounds. Zhang²⁵ reported the photocatalytic performance of ZnS-CuInS₂ nanocrystals, showing promising activity in the photodegradation of rhodamine B (RB). Zheng²⁶ used CuInS₂ as photocatalyst to catalyze hydrogen and a much high H2 yield was obtained under the visible light irradiation. Recently, Zhou²⁷ reported that TiO₂ nanoparticles incorporated with CuInS₂ clusters can improve their photocatalytic activity for degradation of 4-nitrophenol. More recently, Tsuji²⁸ studied the activities of ZnS-CuInS2-AgInS2 solid solution photocatalysts on photolysis of water. But, above-mentioned these I-III-VI2 ternary compounds were synthesized in situ, which is totally different from our research. Actually, our previous report indicated that the photocatalytic activity of TiO2 sensitized by CuInS₂ nanocrystals shows a better performance than that of P25.²⁹

Because of the promising properties of the CuInSe₂ and CuInS₂ nanocrystals sensitizing wide band gap semiconductors, herein we reported a new study on the ZnO/CuInSe₂ and the ZnO/CuInSe₂ two-component nanoheterojunction systems and the ZnO/CuInSe₂/CuInS₂ three-component nanoheterojunction system. Three kinds of semiconductors were separately prepared. ZnO microspheres were synthesized by a hydrolysis of zinc salt in polyol medium, whereas the CuInSe₂ and CuInS₂ nanocrystals were prepared in noncoordinating solvents, which are oleylamine and octadecene, respectively. These different

Received: May 14, 2012 Accepted: July 9, 2012 Published: July 9, 2012 semiconductor materials were then mixed together by a low annealing temperature so as to form heterojunctions. Photocatalytic activities of the ZnO/CuInSe₂ and the ZnO/CuInS₂ heterojunctions and the ZnO/CuInSe₂/CuInS₂ double heterojunctions were investigated by evaluating the photocatalytic degradation of the RB aqueous solution at room temperature. Results indicate that the CuInSe₂ and CuInS₂ nanocrystals can enhance the photocatalytic activities of the ZnO microspheres and the sensitizing effect of the CuInS₂ nanocrystals is better than that of the CuInSe₂ nanocrystals.

2. EXPERIMENTAL SECTION

All chemicals used in this work were analytical-grade reagents and used without further purification. Deionized water with a resistance of $18.3M\Omega\cdot\text{cm}$ was used in the experiment.

2.1. Synthesis of the ZnO Microspheres. ZnO microspheres were synthesized by a hydrolysis of zinc salt at 180 °C, which is described in our previous report.³⁰ Typically, 0.01 mol Zn-(CH₃COO)₂·2H₂O was added to 100 mL diethylene glycol with vigorous stirring and heated to 130 °C until the complete dissolution was achieved. Then, the solution was further heated to 180 °C and kept for 15 min. The obtained solution was centrifuged at the speed of 8000 rpm for 5 min and removed the supernatant. Subsequently, the precipitate was dispersed in ethanol and centrifuged at the speed of 8000 rpm for 10 min again and the ZnO microspheres were thus obtained.

2.2. Synthesis of the CulnSe₂ and CulnS₂ Nanocrystals. CuInSe₂ nanocrystals were synthesized in a noncoordinating oleylamine solvent.³¹ Briefly, 2 mmol CuCl, 2 mmol InCl₃·4H₂O, 4 mmol Se powder, and 10 mL oleylamine were loaded in a three-neck flask. The mixture solution was heated to 80 °C under a nitrogen atmosphere with a stirring for about 30 min to remove water and oxygen. The mixture solution was then quickly heated to 220 °C and incubated for 4 h. Subsequently, the reaction vessel was allowed to cool down to room temperature. Black CuInSe2 nanocrystals were isolated by adding chloroform, precipitating with ethanol, and centrifuging at the speed of 10000 rpm for 5 min. The as-obtained sediment was then further redispersed in chloroform. The precipitation/centrifugation/dispersion cycle was repeated twice in order to eliminate byproducts and unreacted precursors. Thus, the CuInSe₂ nanocrystals were obtained by drying the suspension in oven at 80 °C. The CuInS₂ nanocrystals were synthesized in a noncoordinating octadecene solvent. 29 Briefly, 0.2 mmol CuCl and 0.2 mmol InCl₃·4H₂O were mixed with 2 mL of dodecanethiol and 8 mL of octadecene in a three-neck flask. The following procedures were the same as those of the synthesis of the CuInSe2 nanocrystals.

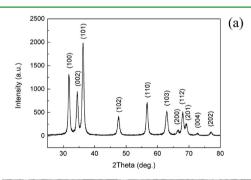
2.3. Formation of Heterojunction Photocatalyst. The CuInSe₂ nanocrystals were first dispersed in chloroform and then mixed with the ZnO microspheres. Here, two kinds of materials were mixed through stirring until the solvent was completely volatilized. The ZnO/CuInSe₂ heterojunction photocatalyst was thus obtained by annealing the mixture at 300 °C for 15 min. For the preparation of the ZnO/CuInS₂ heterojunction photocatalyst, the above procedure was exactly followed with the exception of the CuInS₂ nanocrystals replacing of the CuInSe₂ nanocrystals. Finally, the ZnO/CuInSe₂/CuInS₂ double heterojunctions photocatalyst was obtained by hybridization of the CuInS₂ nanocrystals with the ZnO/CuInSe₂ heterojunction photocatalyst, followed byannealing at 300 °C for 15 min.

2.4. Characterization. X-ray diffraction (XRD) analysis was employed to characterize the crystallinity of the as-synthesized ZnO microspheres, the CuInSe₂ nanocrystals and the CuInS₂ nanocrystals, which employs a D/max 2400 X Series X-ray diffractometer. The X-ray radiation source is Cu K α , obtained at 40 kV, 100 mA, and the scanning speed was 10° min⁻¹ at a step of 0.02°. A transmission electron microscopy (TEM, JEM2100, JEOL Inc., Japan) was employed to observe the morphological properties of the CuInSe₂, CuInS₂ and heterojunction photocatalysts. A field emission scanning

electron microscopy (FESEM, JSM-7000F, JEOL Inc. Japan) was employed to characterize the morphology of the ZnO microspheres. UV—vis absorption spectra of the samples were obtained by a JASCO V-570 UV/vis/NIR spectrometer.

2.5. Photocatalytic Activity Measurement. Photocatalytic activities of the photocatalyst samples were evaluated by observe the degradation of the RB aqueous solution at ambient temperature using a 300 W high-pressure mercury lamp as light source. Typically, 0.03 g of the photocatalyst was added to 100 mL of 10 mg/L RB aqueous solution in a quartz glass container. The solution was continuously stirred in the dark for 2 h to ensure the establishment of an adsorption—desorption equilibrium between the photocatalyst and the RB before irradiation. A certain volume of the suspension solution was withdrawn at a sequence of time intervals. After disposal of the photocatalyst by a centrifugation, the concentration of residual RB aqueous solution was measured by the UV—vis spectrophotometer at 554 nm to calculate the degradation of the RB based on the Beer—Lambert Law. The degradation efficiency of the RB can be defined as follows

$$degradation (\%) = \frac{A_0 - A_t}{A_0} \times 100\%$$
 (1)


where A_0 is the initial concentration of the RB and A_t is the concentration of the RB at reaction time t (min). It was assumed that the photocatalytic degradation of the RB follows a pseudo-first-order kinetic^{33,34} and the kinetic reaction can be expressed as follows

$$A_t = A_0 e^{-kt} \tag{2}$$

where $k \text{ (min}^{-1})$ is the degradation rate constant.

3. RESULTS AND DISCUSSION

Figure 1 (a) shows the XRD pattern of the ZnO microspheres. All of the diffraction peaks can be indexed to the hexagonal phase of ZnO (JPCDS, NO. 36–1451). It can be seen that these diffraction peaks are sharp and intense, indicating its highly crystalline nature. Figure 1b shows the FESEM image of the ZnO microspheres. It reveals that the as-prepared ZnO

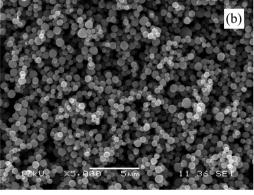
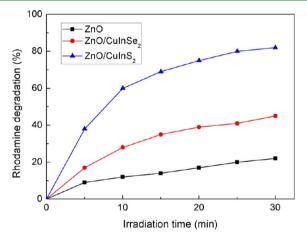


Figure 1. ZnO microspheres: (a) XRD pattern and (b) FESEM image.




Figure 2. (a) XRD patterns; (b) UV-vis absorption spectra of CuInSe₂ and CuInS₂ nanocrystals, the inset shows the UV-vis absorption spectrum of ZnO/CuInSe₂/CuInS₂ heterojunction photocatalyst; (c) TEM image of CuInSe₂ nanocrystals; (d) TEM image of CuInS₂ nanocrystals.

microspheres are dispersive and uniform, and its size is about 500 nm.

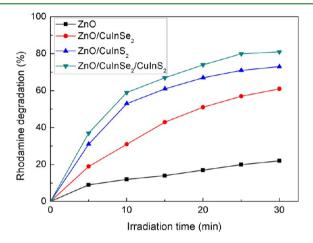
Figure 2 shows the XRD patterns, UV—vis absorption spectra, and TEM images of the as-synthesized CuInSe₂ and CuInS₂ nanocrystals. XRD patterns as shown in Figure 2 (a) reveal that they have a similar crystal structure. In fact, both of CuInSe₂ and CuInS₂ are chalcopyrite compounds. According to the Debye—Scherrer formula, it can be obtained that the size of CuInSe₂ is larger than that of CuInS₂. UV—vis absorption spectrum reflects the photoresponse of the materials. It can be seen from Figure 2b that the absorption of CuInSe₂ nanocrystals and CuInS₂ nanocrystals almost covers the entire visible region and the UV region. The TEM images of the CuInSe₂ and CuInS₂ nanocrystals as shown in images c and d in Figure 2 indicate that two kinds of nanoparticles are dispersive and their sizes are about 20 and 3.5 nm, respectively.

The photocatalytic degradation kinetics of the RB aqueous solution, which has an addition of the pure ZnO microspheres, the ZnO/CuInSe₂ and the ZnO/CuInS₂, respectively, is shown in Figure 3. Here, a mass ratio of ZnO and CuInSe₂ as well as that of ZnO and CuInS₂ is 14:1. Results reveal that 22, 45, and 82% of the RB aqueous solution can be photodegraded under 30 min irradiation by the ZnO microspheres, the ZnO/CuInSe₂, and the ZnO/CuInS₂ photocatalysts, respectively, indicating that an introduction of the CuInSe₂ or CuInS₂ nanocrystals can improve the photocatalytic performance of the ZnO microspheres due to a formation of the ZnO/CuInSe₂ or ZnO/CuInSe₂ heterojunction. Especially, the photocatalytic activity of the ZnO/CuInSe₂ heterojunction photocatalyst, which is probably related to the following two aspects.

(1) Because the optimal band gap for sunlight is about 1.45 eV, the CuInS₂ nanocrystals matches better with sunlight than the CuInSe₂ nanocrystal. Thus, the absorption efficiency of the CuInS₂ nanocrystals to sunlight is higher than that of the CuInSe₂ nanocrystal.

Figure 3. Photocatalytic degradation kinetics of RB aqueous solution with an addition of ZnO microspheres, ZnO/CuInSe₂ (with mass ratio of 14:1) heterojunction photocatalyst, and ZnO/CuInSe₂ (with mass ratio of 14:1) heterojunction photocatalyst.

(2) The size of the CuInS₂ nanocrystals is smaller than that of the CuInSe₂ nanocrystals, which could bring quantum effect. Moreover, smaller size means larger specific surface.


Quantum effect takes place at particle dimensions smaller than the Wannier-Mott exciton Bohr radius of the corresponding macroscopic bulk phase. Wannier—Mott exciton Bohr radius, $R_{\rm B}$, can be calculated according to following formula³⁵

$$R_{\rm B} = \varepsilon_{\infty} \left(\frac{1}{m_{\rm e}^*} + \frac{1}{m_{\rm h}^*} \right) a_{\rm B} \tag{3}$$

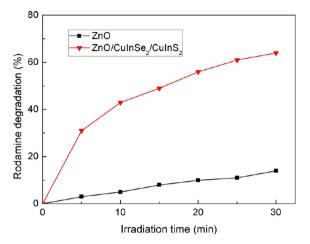
where ε_{∞} is the dielectric constant of the bulk material, and $m_{\rm h}^*$ and $m_{\rm h}^*$ are the reduced masses of the electron and hole, respectively. Taking the CuInSe₂ bulk values of ε_{∞} = 14.7, $m_{\rm e}^*$ = 0.08, $m_{\rm h}^*$ = 0.71, and the CuInS₂ bulk values of ε_{∞} = 11, $m_{\rm e}^*$

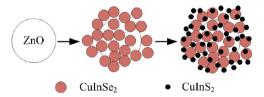
=0.16, m^*_h = 1.3, $^{36-38}$ we calculate the Wannier-Mott exciton Bohr radii of the CuInSe₂ and CuInS₂ bulk are 10.6 and 4.1 nm, respectively. In our experiment, the particle size of the CuInSe₂ nanocrystals (~20 nm) is larger than its corresponding Wannier-Mott exciton Bohr radius, whereas the particle size of the CuInS₂ nanocrystals (~3.5 nm) is smaller than its corresponding Wannier-Mott exciton Bohr radius.

In order to further explore the sensitizing effect of the CuInSe₂ and CuInS₂ nanocrystals, the photocatalytic activities of the ZnO microspheres and the sensitizers with a different mass ratio of 5:1 are also investigated and results are shown in Figure 4, indicating that 61 and 73% of the RB aqueous

Figure 4. Photocatalytic degradation kinetics of RB aqueous solution with an addition of ZnO microspheres, ZnO/CuInSe₂ (with mass ratio of 5:1) heterojunction photocatalyst, ZnO/CuInSe₂ (with mass ratio of 5:1) heterojunction photocatalyst, and ZnO/CuInSe₂/CuInS₂ (with mass ratio of 10:1:1) double heterojunctions photocatalyst.

solution can be photodegraded under 30 min irradiation by the ZnO/CuInSe₂ and ZnO/CuInS₂ photocatalysts, respectively. Obviously, the photocatalytic performance of the ZnO/CuInS₂ heterojunction photocatalyst is still better than that of the ZnO/CuInSe₂ heterojunction photocatalyst. Additionally, as compared with the results as shown in Figure 3, it is easy to find that the photocatalytic performance of the ZnO/CuInSe₂ increases a little, whereas the photocatalytic performance of the ZnO/CuInS₂ decreases a little with increasing the content of the sensitizer. Interestingly, when 50% of the CuInSe₂ nanocrystals and 50% of the CuInS2 nanocrystal replace of the CuInS2 nanocrystals to sensitize the ZnO microspheres, the photocatalytic activity of the as-obtained ZnO/CuInSe₂/ CuInS₂ photocatalyst is better than that of the ZnO/CuInS₂ heterojunction photocatalyst. It can be seen from Figure 4 that about 81% of the RB can be photodegraded by the ZnO/ CuInSe₂/CuInS₂ photocatalyst under 30 min irradiation. Here, the mass ratio of ZnO, CuInSe₂, and CuInS₂ in the ZnO/ CuInSe₂/CuInS₂ system is 10:1:1. To further investigate the photocatalytic activities of the ZnO and the ZnO/CuInSe₂/ CuInS2, an UV filter is used to filter out UV and the results are shown in Figure 5. It can be seen that the photocatalytic activity of the ZnO/CuInSe2/CuInS2 is still higher than that of the ZnO, but the photocatalytic activities of the ZnO and the ZnO/ CuInSe₂/CuInS₂ are worse than those of the samples under the irradiation of mercury lamp without an UV filter. In 30 min, 14 and 64% of the RB can be photodegraded by the ZnO and the ZnO/CuInSe₂/CuInS₂ photocatalysts, respectively.




Figure 5. Photocatalytic degradation kinetics of RB aqueous solution with an addition of ZnO microspheres, $ZnO/CuInSe_2/CuInS_2$ (with mass ratio of 10:1:1) double heterojunctions photocatalyst under an irradiation of mercury lamp with an UV filter.

The degradation rate k of all the evaluated photocatalysts is presented in Table 1. These results indicate that the

Table 1. Values of the Degradation Rate Constant k for different photocatalysts

photocatalyst	$k \text{ (min}^{-1}) \text{ (average)}$
ZnO	0.008
ZnO/CuInSe ₂ -14:1	0.020
ZnO/CuInS ₂ -14:1	0.057
ZnO/CuInSe ₂ -5:1	0.031
ZnO/CuInS ₂ -5:1	0.044
ZnO/CuInSe ₂ /CuInS ₂ -10:1:1	0.055
ZnO (with UV filter)	0.005
ZnO/CuInSe ₂ /CuInS ₂ -10:1:1 (with UV filte	er) 0.034

photocatalytic performance of the hybridization photocatalysts is obviously improved as compared to that of the pure ZnO microspheres. The preparation procedure of the $ZnO/CuInSe_2/CuInS_2$ double heterojunctions system is shown in Figure 6. First, 8.3 wt % of the $CuInSe_2$ nanocrystals are

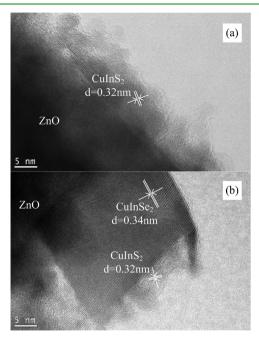


Figure 6. Formation scheme for the ZnO/CuInSe₂/CuInS₂ double heterojunctions system.

blended with the ZnO microspheres, followed a heat treatment at 300 °C for 30 min to form the ZnO/CuInSe₂ heterojunction. Then, 8.3 wt % of CuInS₂ nanocrystals are blended with the ZnO/CuInSe₂ heterojunction, followed a heat treatment at 300 °C for 30 min again to form the ZnO/CuInSe₂/CuInS₂ double heterojunctions.

To visualize the hybridization between the ZnO microsphere and the CuInSe₂ nanocrystals as well as the CuInS₂ nanocrystals in the ZnO/CuInS₂ system and the ZnO/CuInSe₂/CuInS₂ system, the ZnO/CuInS₂ sample and the ZnO/CuInSe₂/CuInS sample as presented in Figure 4 were

characterized by TEM. Figure 7 (a) shows a representative high-resolution TEM (HRTEM) image of the $\rm ZnO/CuInS_2$

Figure 7. HRTEM images of the interface between (a) ZnO and $CuInS_2$ (with mass ratio of 5:1) and (b) ZnO, $CuInSe_2$, and $CuInS_2$ (with mass ratio of 10:1:1).

sample. The visible lattice fringe of the CuInS₂ nanocrystals indicates that they are adhered to the ZnO microspheres. The particle size of the ZnO microspheres is too large as compared to the CuInS₂ nanocrystals, which prevents the simultaneous display of the lattice of ZnO and CuInS₂. Figure 7b presents a representative TEM image of the ZnO/CuInSe₂/CuInS₂

double heterojunctions photocatalyst. The lattice of $CuInSe_2$ and $CuInS_2$ can be clearly distinguished and some $CuInS_2$ nanocrystals are adhered to the $CuInSe_2$ nanocrystals and the others are adhered to the ZnO microspheres, which results in better photocatalytic activity.

On the basis of the above results, the photocatalytic performance of the ZnO microspheres can be greatly enhanced by introducing CuInSe₂ and CuInS₂ nanocrystals. The inset in Figure 2b shows the absorption spectrum of the ZnO/ CuInSe₂/CuInS₂ double heterojunctions photocatalyst. There is a great absorption in 400-600 nm region. The enhanced photocatalytic activity is ascribed to not only that the CuInSe₂ and CuInS₂ nanocrystals can improve the absorption efficiency of the photocatalysts to solar energy but also that the formation of the heterojunction that can inhibit the recombination of the photogenerated electron-hole pairs. Actually, the relative position of energy level of the hybridization semiconductors affects the transfer of electrons and holes and finally affects photocatalytic performance. Figure 8 (a) illustrates the relative energy levels of ZnO, CuInSe₂ and CuInS₂ before contact. ZnO is an n-type semiconductor whose Fermi energy level is located to the conduction band, while CuInSe2 and CuInS2 are p-type semiconductors whose Fermi energy levels lie close to valence band.³⁹ When ZnO is in contact with CuInSe₂ to form a heterojunction, their Fermi energy levels reach equilibration. Meanwhile, the energy bands of ZnO shift downward along with the Fermi energy level, whereas the energy bands of CuInSe₂ shift upward along with the Fermi energy level. Then, the photogenerated electrons transfer from the conduction band of CuInSe, to the conduction band of ZnO, whereas the photogenerated holes transfer in the opposite direction along with valence bands. The whole process is illustrated in Figure 8b. A similar situation also happens in the ZnO/CuInS₂ heterojunction system, which is shown in Figure 8c. Figure 8d illustrates the separation and transmission of the photo-

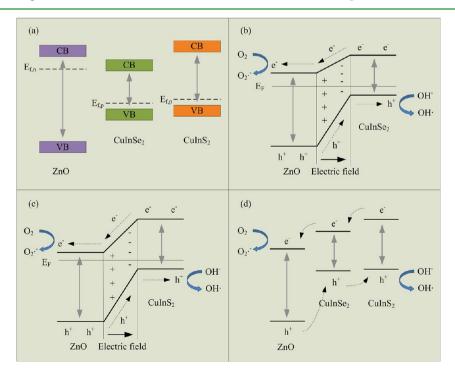


Figure 8. Diagram of the (a) band energy of ZnO, CuInSe₂ and CuInS₂ before contact, and the electron—hole pair separation and transmission in (b) ZnO/CuInSe₂ heterojunction system, (c) ZnO/CuInS₂ heterojunction system, and (d) ZnO/CuInSe₂/CuInS₂ double heterojunction system.

generated electron—hole pairs in the $\rm ZnO/CuInSe_2/CuInSe_2$ double heterojunctions system. When the Fermi energy levels reach equilibration, the photogenerated electrons transfer from the conduction band of $\rm CuInSe_2$ to that of $\rm CuInSe_2$ and then to that of $\rm ZnO$, whereas the photogenerated holes transfer in the opposite direction along with valence bands. The hybridization of the $\rm ZnO$ microspheres with the $\rm CuInSe_2$ and $\rm CuInSe_2$ nanocrystals inhibits the recombination of the electron—hole pairs, thus resulting in more holes can participate in the photooxidation process.

4. CONCLUSIONS

The CuInSe₂ and CuInS₂ nanocrystals have been successfully synthesized by the solvothermal method and used to couple with the ZnO microspheres prepared by the hydrolysis method to form the ZnO/CuInSe₂ or ZnO/CuInS₂ heterojunction, which is beneficial for the photodegradation of the RB. Results indicate that the photocatalytic efficiency of the ZnO/CuInSe₂ and ZnO/CuInS₂ heterojunction photocatalysts is always higher than that of the pure ZnO microspheres photocatalyst, and the photocatalytic performance of the ZnO/CuInS₂ heterojunction photocatalyst is better than that of the ZnO/ CuInSe₂ heterojunction photocatalyst. However, the double heterojunctions photocatalyst of the ZnO/CuInSe2/CuInS2 shows the highest photocatalytic activities in all evaluated heterojunction photocatalysts. The enhanced photocatalytic activity is mainly ascribed to the formation of the heterojunctions, which can improve the absorption efficiency to light and inhibit the recombination of the photogenerated electron-hole pairs.

AUTHOR INFORMATION

Corresponding Author

*Tel.: +86-29-82668679. Fax: +86-29-82668794. E-mail: wxque@mail.xjtu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Major Program of the National Natural Science Foundation of China (no. 90923012) and the Fundamental Research Funds for the Central Universities.

REFERENCES

- (1) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science **2001**, 293, 269–271.
- (2) Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69–96.
- (3) Tang, Y. X.; Wee, P. X.; Lai, Y. K.; Wang, X. P.; Gong, D. G.; Kanhere, P. D.; Lim, T. T.; Dong, Z. L.; Chen, Z. *J. Phys. Chem. C* **2012**, *116*, 2772–2780.
- (4) Yin, L. F.; Shen, Z. Y.; Niu, J. F.; Chen, J.; Duan, Y. P. Environ. Sci. Technol. 2010, 44, 9117-9122.
- (5) Pang, Y. L.; Abdullah, A. Z.; Bhatia, S. Appl. Catal. B 2010, 100, 393-402.
- (6) Han, F.; Kambala, V. S. R.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. Appl. Catal. A 2009, 359, 25–40.
- (7) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637–638.
- (8) Kuo, C. L.; Kuo, T. J.; Huang, M. H. J. Phys. Chem. B 2005, 109, 20115–20121.
- (9) Wan, Q.; Wang, T. H.; Zhao, J. C. Appl. Phys. Lett. 2005, 87.
- (10) Wang, Z.; Song, J. Science 2006, 312, 242-246246.

- (11) Burda, C.; Lou, Y. B.; Chen, X. B.; Samia, A. C. S.; Stout, J.; Gole, J. L. *Nano Lett.* **2003**, *3*, 1049–1051.
- (12) Wu, J. J.; Tseng, C. H. Appl. Catal. B-Environ. 2006, 66, 51-57.
- (13) Pawinrat, P.; Mekasuwandumrong, O.; Panpranot, J. Catal. Commun. 2009, 10, 1380–1385.
- (14) Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. D. J. Am. Chem. Soc. **2011**, 133, 5660–5663.
- (15) Li, C. Z.; Zhang, J. Y.; Yang, J. A.; Wang, T. M.; Lv, X.; Tang, Z. L. Appl. Catal. A-Gen. 2011, 402, 80–86.
- (16) Zhang, Z.; Shao, C.; Li, X.; Wang, C.; Zhang, M.; Liu, Y. ACS Appl. Mater. Interfaces 2010, 2, 2915–2923.
- (17) Xu, C.; Cao, L. X.; Su, G.; Liu, W.; Liu, H.; Yu, Y. Q.; Qu, X. F. J. Hazard. Mater. **2010**, 176, 807–813.
- (18) Hameed, A.; Gombac, V.; Montini, T.; Graziani, M.; Fornasiero, P. Chem. Phys. Lett. **2009**, 472, 212–216.
- (19) Wang, X. W.; Liu, G.; Chen, Z. G.; Li, F.; Wang, L. Z.; Lu, G. Q.; Cheng, H. M. Chem. Commun. 2009, 3452–3454.
- (20) Xu, J.; Lee, C. S.; Tang, Y. B.; Chen, X.; Chen, Z. H.; Zhang, W. J.; Lee, S. T.; Zhang, W. X.; Yang, Z. H. ACS Nano 2010, 4, 1845–
- (21) Yue, W.; Han, S.; Peng, R.; Shen, W.; Geng, H.; Wu, F.; Tao, S.; Wang, M. J. Mater. Chem. **2010**, 20, 7570–7578.
- (22) Wang, X. L.; Pan, D. C.; Weng, D.; Low, C. Y.; Rice, L.; Han, J. Y.; Lu, Y. F. J. Phys. Chem. C 2010, 114, 17293–17297.
- (23) Omata, T.; Nose, K.; Otsuka-Yao-Matsuo, S. J. Appl. Phys. 2009, 105073106
- (24) Chiang, M. Y.; Chang, S. H.; Chen, C. Y.; Yuan, F. W.; Tuan, H. Y. J. Phys. Chem. C 2011, 115, 1592–1599.
- (25) Zhang, W. J.; Zhong, X. H. Inorg. Chem. 2011, 50, 4065-4072.
- (26) Zheng, L.; Xu, Y.; Song, Y.; Wu, C. Z.; Zhang, M.; Xie, Y. *Inorg. Chem.* **2009**, *48*, 4003–4009.
- (27) Kang, S. Z.; Yang, Y. K.; Bu, W. B.; Mu, I. J. Solid State Chem. **2009**, 182, 2972–2976.
- (28) Tsuji, I.; Kato, H.; Kudo, A. Chem. Mater. 2006, 18, 1969-1975.
- (29) Shen, F.; Que, W.; Liao, Y.; Yin, X. Ind. Eng. Chem. Res. 2011, 50, 9131–9137.
- (30) Zhang, J.; Que, W. X.; Jia, Q. Y.; Zhong, P.; Liao, Y. L.; Ye, X. D.; Ding, Y. C. J. Alloys Compd. 2011, 509, 7421-7426.
- (31) Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A. *J. Am. Chem. Soc.* **2008**, *130*, 16770–16777.
- (32) Ingle, J. D. J.; Crouch, S. R. Spectrochemical Analysis; Prentice Hall: Upper Saddle River, NJ, 1988.
- (33) Fujishima, A.; Zhang, X.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515-582.
- (34) Abdullah, A. Z.; Ling, P. Y. J. Hazard. Mater. 2010, 173, 159-167.
- (35) Knox, R. S. Theory of Excitons, Solid State Physics Supplement 5; Academic Press: New York, 1963.
- (36) Rincon, C.; Marquez, R. J. Phys. Chem. Solids 1999, 60, 1865–1873.
- (37) Czekelius, C.; Hilgendorff, M.; Spanhel, L.; Bedja, I.; Lerch, M.; Muller, G.; Bloeck, U.; Su, D. S.; Giersig, M. *Adv. Mater.* **1999**, *11*, 643–646.
- (38) Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F. Chem. Mater. **2003**, *15*, 3142–3147.
- (39) Jiang, J.; Zhang, X.; Sun, P. B.; Zhang, L. Z. J. Phys. Chem. C 2011, 115, 20555–20564.